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A dynamic model is described for vibration isolation systems consisting of
a source machine, multiple vibration isolators and a supporting structure. The
machine is modeled as a rigid body of six degrees of freedom. Each of the isolators
is treated as an assembly of six simple translational and rotational springs and
allowed to be inclined at arbitrary angles. The supporting structure is composed of
a rectangular plate and a number of reinforcing beams placed in any directions.
The equation of motion of such a composite structure is derived from Hamilton's
principle and then combined with that of the machine to determine the modal
characteristics and vibrations of the whole isolation system, the reaction forces at
each isolator, and the power #ows into the supporting structure. Numerical
examples are presented to examine the power #ows under various situations.

( 1999 Academic Press
1. INTRODUCTION

A vibratory machine such as an engine or a compressor is often mounted via
vibration isolators onto a supporting structure, as a common practice for noise and
vibration control. Usually, in a vibration isolation analysis only the machine and
isolators are explicitly considered by assuming that the supporting structure has
a much larger impedance than the isolators do. As a result, the reaction forces or
force transmissibilities are often used to measure the performance of an isolation
system. Since the reaction forces at each mounting point are typically di!erent in
both amplitude and phase, one may "nd it di$cult to directly use them to de"ne
a cost function for the purpose of design optimization. This problem is further
compounded by the fact that the magnitudes of the transmitted forces are not
necessarily the most important factors that a!ect the vibration levels on or the
sound radiation from the supporting structure.

As a matter of fact, it has long been recognized that a more comprehensive
isolation analysis should take into account the impedance characteristics of the
sources and/or the supporting structures [1}4]. Power #ows from a vibratory
machine through isolators into its supporting structure have recently been widely
used to assess the e!ectiveness of a passive or active vibration isolation system
0022-460X/99/290757#18 $30.00/0 ( 1999 Academic Press
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[5}12]. Prediction of power #ows requires the simultaneous determination of the
isolator forces acting on and the corresponding responses of the supporting
structure. In references [5}7], the impedance behaviors of the supporting structures
are represented by simple straight lines when plotted on a log}log scale. The power
#ows from a spring-supported point mass to a "nite beam were studied by Goyder
and White [8] with emphasising on when the simple straight line impedance
formulae could be adequately used to make frequency-averaged power prediction.
Power transmissions from a rigid body, through multiple isolators, to a simple
plate and cylindrical shell were investigated in references [9, 10]. Gardonio et al.
[11, 12] have used a matrix approach to model an active isolation system in which
the dynamics of the machine, the isolators and the supporting structure (receiver)
are expressed in terms of the point and transfer mobilities or impedances. Use of the
total power #ow as a cost function was compared with approaches based on the
out-of-plane velocities or forces. It has been shown that the control of total power
gives the best results under ideal conditions. Sanderson [13] studied the e!ects of
the rotational isolator sti!nesses by considering the power #ows between two
beams that are connected by one or more isolators in various forms. An error level
was used to measure the contributions of the rotational sti!nesses, which is de"ned
as the dB di!erence in the total power #ows calculated with and without including
the rotational isolator sti!nesses. It has been demonstrated that the power #ows
associated with the rotational d.o.f.s should be considered when the normalized
(translational to rotational) sti!ness ratio is not su$ciently large or the structural
wavelength is shorter than the involved beams for the sti!ness ratio close to unity.
He concluded that the power #ows related to the rotational sti!nesses can
be either positive or negative and the maximum error levels typically occur
at the resonant and anti-resonant frequencies of the beam structures. The
importance of the moment excitations to power #ows were also discussed in
references [14}19].

In this study, a dynamic model is described for vibration isolation systems
consisting of a source machine, multiple vibration isolators and a supporting
structure. The machine is modeled as a rigid body of six degrees of freedom. Each of
the isolators is treated as an assembly of six simple translational and rotational
springs and allowed to be inclined at arbitrary angles. The supporting structure is
composed of a rectangular plate and a number of reinforcing beams placed in any
directions. The equation of motion of such a composite structure is derived from
Hamilton's principle and then combined with that of the machine to determine the
modal characteristics and vibrations of the whole isolation system, the reaction
forces at each isolator, and the power #ows into the supporting structure. Numer-
ical examples are presented to examine the power #ows under various situations.

2. DYNAMIC DESCRIPTION OF A COMPOSITE ISOLATION SYSTEM

2.1. THE VIBRATION OF THE MACHINE

Consider a generic vibration isolation system consisting of a vibratory machine,
several isolators and a supporting structure, as shown in Figure 1. In isolation



Figure 1. Schematic of a vibration isolation system.
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analyses, the machine is often modeled as a 6-d.o.f. rigid body characterized by
a mass matrix
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where m is the mass of the machine, and I
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are the moments and
products of the inertia.

The di!erential equations that govern the motions of the machine can be written
as
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where u# is the displacement vector of the center of gravity (or C.G.) of the machine,
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is the &&localized'' load due to the reaction forces at the ith mounting point, f.

represents the remaining forces acting on the machine, and N
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The reaction forces at the ith isolator can be expressed as
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where u
i
and u0

i
are, respectively, the displacement vectors at the upper and lower

ends of the ith isolator which is represented by an elasticity matrix K
i
.

The reaction forces and the displacements at each mounting point can be easily
&&transformed'' to the C.G. of the machine, via
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and ai
x
, ai

y
, and ai

z
, are, respectively, the projections onto the x-, y- and z-axis of the

distance (vector) from the machine C.G. to the top of the ith isolator.
The isolators will be here considered as an assembly of six simple linear and

rotational springs. Assume that p, q and r are the axes of these springs locally
de"ned on the ith isolator. Then its sti!ness matrix can be expressed as
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where diag(. ) denotes the diagonal matrix formed from the listed elements, Kj
i
and
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being the transformation matrix whose elements are simply the direction cosines of
the axes of the springs.

Without loss of generality, the springs, Kp
i
, Kq

i
, Kr

i
, will be de"ned in such a way

that Kr
i
, is parallel to the isolator's axis, and Kp

i
is (perpendicular to K r

i
and) in the

plane which contains Kr
i

and the z-axis, as illustrated in Figure 2. As a result, the
spatial orientations of the spring can be fully speci"ed in terms of the two spherical
angles, /

i
and h

i
, and the transformation matrix can be explicitly expressed as
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Substituting equations (3)}(5) into equation (2) results in
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i/1



Figure 2. An inclined isolator.
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where
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In equation (11), the superscript mm is introduced to indicate that these matrices
are directly associated with the machine vibration. If the vibrations of the support-
ing structure are so small that the resulting forces, +Nk

i/1
K'

i
u0
i
, are negligible as

compared with the applied force f., equation (11) along can be used to determine
the motions of the machine. However, when the vibrations of the supporting
structure are signi"cant as happened in many cases, the machine vibrations can no
longer be adequately determined without explicitly knowing the motions of the
supporting structure at the mounting points. Therefore, the motions of the machine
and supporting structure are now coupled together, which requires an additional
structural equation for a complete solution.

2.2. THE VIBRATION OF THE SUPPORTING STRUCTURE

The equation of the motion of the supporting structure will be derived by using
Hamilton's principle,

d P
t1

t0

(¹!< ) dt"0, (14)

where ¹ is the total kinetic energy,< is the total potential energy, and t
0

and t
1

are
time limits.

In the current study, the supporting structure is assumed to be a simply sup-
ported rectangular plate reinforced by a number of beams with arbitrary lengths
and directions. Accordingly, the total kinetic and potential energies can be
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expressed as
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respectively, the Young's modulus, the Poisson ratio and the mass density of the
plate; E
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modulus, the mass density, the length, the cross-sectional area, the area moment of
inertia and the torsional constant of the ith beam; and N
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is the total number of

reinforcing beams.
Neglecting the in-plane displacements and the drilling rotation of the supporting

structure, the displacements of the lower end of the ith isolator can be written as
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In equations (18) and (20), the kinetic and potential energies for each beam are
expressed in terms of the local co-ordinates (x@, y@, z@ ) which are de"ned such that
the x@-axis always lies on the beam and z@"z, as shown in Figure 3. The derivatives
with respect to the local co-ordinates can be easily determined from
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Figure 3. The local co-ordinate system de"ned on a beam.
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Making use of these results, for example, the potential energy corresponding to
the bending of the ith beam can be written as
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The remaining integrals associated with the beams will be calculated in the same
manner. For ¸

xbi
!¸

xei
, the expressions will become much simpler by realizing

(x@, y@ ),(y, !x).
Here, the eigenfunctions for the simply supported plate are chosen as the

admissible functions for the #exural displacement of the supporting structure, that
is,
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Substitution of equations (15)} (30) into equation (14) results in
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and K 44 and M44 are, respectively, the sti!ness and mass matrices whose expressions
are given in Appendix A

2.3. COUPLED MOTIONS AND POWER FLOWS

In light of equations (22) and (28), equation (11) can be rewritten as
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The vibrations of the machine and the supporting structure can now be obtained
simultaneously from equation (39). Setting the external forces f. to zero, equation
(39) reduces to a standard characteristic equation from which the modal properties
of the composite system can be directly determined. Because the responses are often
desired at a large number of frequency steps, the modal superposition technique is
here used to solve equation (39).

The power #ow, say, through the jth isolator into the supporting structure can be
obtained from

P
j
"1

2
RMiuRT

+
conj (u0

+
)N, (40)

where RM .N and conj ( . ) denote the real part and complex conjugate of a complex
quantity, respectively.

The total or net power #ow from the machine into the supporting structure is the
sum of the power #ows through each of the isolators, namely,
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Figure 4. The positions of the isolators and beams.
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The total power #ow is clearly a function of those variables that are used to specify
the physical and geometrical properties of the machine, the supporting structure,
and the vibration isolators. Therefore, it can be conveniently used as a cost function
to be minimized in a vibration isolation design optimization.

In the above discussion, the characteristics of the isolators have been simply
represented by a diagonal sti!ness matrix. A more general relationship between the
isolator end forces and displacements can be expressed as
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where R0
i

denotes the reaction forces at the lower end of the ith isolator and Kjk
i

( j, k"1 or 2) generally represents a full 6]6 sti!ness matrix. Although the
determination of these sti!ness matrices may be an issue of practical concern, one
may "nd it is not di$cult to directly incorporate this modi"cation, equation (42),
into the above expressions.

3. RESULTS AND DISCUSSIONS

For demonstration, consider a machine mounted on a 0)5 m]0)5m]0)002m
simply supported plate that is reinforced by two identical beams in the x-direction,
as illustrated in Figure 4. The plate and beams are made of steel
(E"2)07]1011 N m~2, l"0)3 and o"7800 kgm~3). The other related para-
meters for the machine, the isolators and the beams are listed in Table 1. A uniform
modal damping ratio, 0)02, is assumed in the following calculations. An extra 2%
hysteretic damping is added to the isolators.

3.1. THE MODES OF THE COMPOSITE ISOLATION SYSTEM

As a rule of thumb in a machine isolation design, the lowest natural frequencies
of the isolation system should be su$ciently lower than or distanced from the
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¹he properties of the machine, isolators and beams

Isolators Machine Beams
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TABLE 2
¹he lowest natural frequencies (in Hz) of the machine, the supporting structure, and

the combined isolation system

Mode The Machine on The supporting The whole
number the isolators structure alone isolation system

1 81)7 41)2 12)9
2 85)2 96)1 23)5
3 161)2 111)0 29)2
4 162)1 164)2 97)5
5 183)8 187)4 105)2
6 193)7 220)5 112)2
7 * 254)6 142)2
8 * 284)9 193)7
9 * 318)9 197)9
10 * 364)5 244)8
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fundamental excitation frequency and its "rst few multiples. However, the modal
parameters independently predicted for the unloaded supporting structure or the
machine mounted on a set of grounded isolators can be meaningfully modi"ed
when the interaction of the machine and the supporting structure is taken into
account. To study the e!ects, Table 2 compares the lowest natural frequencies for
the unloaded supporting structure, the machine resting on the grounded isolators,
and the whole combined isolation system. Of the six machine modes, only the
yawing mode at 193)7 Hz is not a!ected by the inclusion of the supporting
structure. The results clearly indicate that the e!ects of the coupling between the
machine and the supporting structure need to be considered for an accurate
prediction.

Given in Figure 5 are four selected mode shapes for the loaded (supporting)
structure. In the "rst mode, the presence of the machine is simply manifested as
a mass loading. The machine's in#uences cannot be so easily characterized for the
other structural modes. However, the strong couplings between the motions of the
machine and the supporting structure are primarily limited to "ve of the "rst six
modes (except for the fourth mode). For the higher order modes, the motions of the



Figure 5. Four of the lower structural modes: (a) f
1
"12)9 Hz, (b) f

2
"23)5 Hz, (c) f

7
"142)2 Hz,

and (d) f
10
"244)8 Hz.
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machine become insigni"cant and the structural modes such as the last two in
Figure 5 can be essentially obtained by assuming the isolators are grounded at the
machine ends.

In the above modal analysis, 64 eigenfunctions (M"N"8) have been used in
equation (28), allowing a total of 70 modes (for the whole isolation system) to be
included in the following power #ow calculations).

3.2. THE POWER FLOWS INTO THE SUPPORTING STRUCTURE

Assume that a point force, F
x
"1 N, is applied to the machine C.G. in the

x-direction. Figure 6 shows the total power #ow into the supporting structure
versus the sum of the vertical reaction forces at each isolator location. The force and



Figure 6. (a) The total vertical reaction force in dB (reference 1N) versus (b) the total power #ow in
dB (reference 10~12 W); F

x
"1 N.
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Figure 7. The total power #ows: **, M
x
"1 Nm; - - - - - -, F

x
"1 N.
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power predictions are noticeably di!erent, especially at high frequencies. For
instance, the force analysis is unable to produce the sixth peak at 142 Hz (corres-
ponding to the seventh mode) on the power curve, nor does it predict the same
trend toward the end of the frequency range. However, that the use of the total
reaction force to assess the isolation e$ciency may be problematic at high frequen-
cies should not come as a surprise: when the distances between the isolators become
comparable to or longer than the wavelengths of the structural waves, the &&total
reaction force'' may no longer be a meaningful term.

Now consider a di!erent loading case: the machine is subjected to a moment
about the x-axis, M

x
"1Nm. The total power #ow is compared in Figure 7 with

that for the previous case. It is seen that the power #ow curve tends to be #at for the
moment excitation. This is essentially consistent with the existing knowledge about
the (frequency-averaged) response characteristics of plates or beams under a mo-
ment excitation. Intuitively, the gross e!ect of the reaction forces on the supporting
structure should be moment-like for this loading case. However, instead of increas-
ing with frequency as expected, the power #ow curve is roughly constant here. This
may be due to the fact that the unity moment applied has been partially &&absorbed''
by the machine (inertia) at a speed of about 6-dB per octave.

The power #ows through each isolator are also of interest. Even though the total
power #ow is typically from the source machine to the supporting structure, those
through each individual isolator may not necessarily be equal or occur in the same
direction. Figure 8 details the power #ows through the two front (labeled 1 and 3 in



Figure 8. The power #ows through: (a)**, the four isolators; - - - - - , the two front isolators; (b)
- - - - - , the two rear isolators; M

x
"1.
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Figure 9. The total power #ows:**, original plate; - - - - - , 0)004 m plate; and } )} ) } ) } ) , 0)001 m
plate; M

x
"1.
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Figure 4) and two rear isolators (labeled 2 and 4). Before the "rst natural frequency,
the amounts of power #ows through each group are basically equal. Near the "rst
three peaks, the two front isolators dominate the power #ow into the supporting
structure. In the rest of the frequency range, the power transmission is primarily
through the two rear isolators. The missing parts of the curves (say, near 200 Hz on
the curve for the front isolators) indicate a negative power #ow (from the
supporting structure to the machine). The amounts of the negative power #ows can
be read from the surpluses on the other curve at the corresponding frequencies.

Power #ows are functions of the variables used to either specify the properties of
the involved components (the machine, the isolators and the supporting structure)
or describe the way in that the whole isolation system is assembled. As an example,
a simple structural modi"cation will be considered here: changing the plate thick-
ness from 0)002 to 0)001 and 0)004 m. The total power #ow curves are compared in
Figure 9 for these three di!erent plates. Realizing that the curves in Figure
9 actually represent the power transmission characteristics of the isolation systems,
a quantitative comparison of their overall isolation e$ciencies cannot be made
without explicitly knowing the spectra of the actual loads acting on the machine.
However, a qualitative comparison may still be possible. For instance, Figure 9
shows that the 0)001 m plate outperforms the 0)004 m one almost in the whole
frequency range. The e!ects of modifying other design variables can be evaluated in
the same manner.
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4. CONCLUDING REMARKS

A dynamic model has been described for determination of the vibrations of the
power #ows between a vibratory machine and its supporting structure. Because the
interaction of the machine and the supporting structure has been taken into
account, the modal parameters of the whole isolation system can be accurately
obtained which are usually found quite di!erent from those independently deter-
mined for the components. Typically, only the several lowest modes exhibit
a strong coupling between the motions of the machine and the supporting structure
and the remaining modes may be simply determined as if the isolators were
grounded at the machine ends.

In comparison with the reaction forces, power #ows are a more manageable and
perhaps more meaningful measure of the e!ectiveness of a vibration isolation
systems, especially at high frequencies. The power #ows as a physical quantity may
also carry more information on how to improve an isolation design. When a ma-
chine is mounted on multiple isolators, the amounts and the directions of the power
#ows through each isolator can be substantially di!erent and vary with frequency.
Although the power #ow analysis involves solving a more complicated dynamic
problem, the extra e!ort may be worthwhile with regard to the aforementioned
bene"ts. Furthermore, in view of the relative ease of specifying the machine loads,
such a combined analysis can e!ectively avoid the di$culties, which may otherwise
be encountered in an isolated structural analysis, associated with determining the
loads actually applied on the supporting structure.
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APPENDIX A: ELEMENTS OF THE STIFFNESS AND MASS MATRICES

The detailed expressions of the sti!ness and mass matrices in equation (31) are
given as follows:
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